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Abstract

A direct numerical simulation is performed for a turbulent concentric annular pipe flow at ReDh ¼ 8900 for two radius ratios
(R1=R2 ¼ 0:1 and 0.5). Main emphasis is placed on the transverse curvature effect on near-wall turbulent structures. Near-wall
turbulent structures close to the inner and outer walls are scrutinized by computing the lower-order and higher-order statistics. The

Reynolds stress budgets are illustrated to confirm the results of the lower-order statistics. A quadrant analysis of the Reynolds shear

stress is explored to develop a sufficiently complete picture of the contribution of flow events to turbulence production (con-

sumption). Probability density functions of the inclination angles of the projected vorticity vectors are investigated to analyze the

transverse curvature effects on the orientation of the vorticity field. The present numerical results show that the turbulent structures

near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration

processes between the inner and outer walls. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Annular pipe flow is important in engineering appli-
cations such as heat exchangers, gas-cooled nuclear re-
actors and drilling operations in the oil and gas industry
(Nouri et al., 1993; Escudier et al., 1995). Also, annular
pipe flow provides insight into the general problem of
fully developed turbulent shear flows. In the case of a
concentric annular pipe flow, two boundary layers exist
which have different distributions of turbulent quanti-
ties. Moreover, pipe and channel flows are the limiting
cases of annular pipe flow. For a small (high) radius
ratio, the profiles of turbulent quantities close to the
inner cylinder are similar to those of the TBL (turbulent
channel flow) on a cylinder in an axial flow. On the other
hand, the profiles close to the outer wall are similar to
those of turbulent pipe flow in both cases.

A literature survey reveals that there have been many
experimental and numerical studies on fully developed
turbulent flow through concentric annuli (Knudsen and
Katz, 1950; Brighton and Jones, 1964; Quarmby, 1967;
Rehme, 1974). It is known that the main concern in the
earlier experimental studies was the coincidence of the
radial positions between zero shear stress and maximum
velocity. Knudsen and Katz (1950), Brighton and Jones
(1964) and Quarmby (1967) found that the radial posi-
tion of maximum velocity is coincident with the position
of zero shear stress. On the other hand, Rehme (1974)
observed the non-coincidence of the positions between
zero shear stress and maximum velocity through an in-
tensive experimental work. Moreover, he found that the
position of zero shear stress is closer to the inner wall
than that of maximum velocity. Nouri et al. (1993) and
Escudier et al. (1995) performed an LDV experiment in
concentric annuli for a radius ratio (a ¼ 0:5). They used
non-Newtonian fluids to take into account realistic flow
characteristics. Azouz and Shirazi (1998) evaluated
several turbulent models to predict the turbulent flow in
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concentric annuli. Their predicted results were com-
pared with the experimental data of Nouri et al. (1993).
A perusal of the relevant literature indicates that

studies of turbulent concentric annular pipe flows with
transverse curvature are relatively scarce. By changing
the radius ratio (a ¼ R1=R2), overall characteristics of
the wall bounded turbulent structure in the vicinity
of the inner and outer walls are altered significantly

due to the influence of transverse curvature. Recently,
Satake and Kawamura (1993) performed a large eddy
simulation of concentric annular pipe flows with three
radius ratios (a ¼ 0:02, 0.04 and 0.1). They focused on
the identification of vortical structures near the inner
wall. For a small radius ratio, turbulent structures near
the inner wall are quite similar to those of TBL on a
cylinder in an axial flow (Quarmby, 1967; Jonsson and

Nomenclature

Cf skin friction coefficient ¼ sw=ð1=2ÞqU 2
m

Dh hydraulic diameter ¼ 4d
F flatness factor
F ðv0rÞ flatness factor of the wall-normal velocity

fluctuation
k turbulent kinetic energy¼ð1=2Þðv02r þv02h þv02z Þ
Kp non-dimensional pressure gradient ¼ m=

ðqu3sÞdp=dz
K� energy partition parameter ¼ 2v02z =ðv02r þ v02h Þ
Lz computational length in the z direction
Lhi ; Lho computational length of the inner and outer

walls in the h direction, respectively
Nr, Nh, Nz grid points in the r, h, z directions, re-

spectively
p pressure
qr; qh; qz qh ¼ vh, qr ¼ rvr, qz ¼ vz
r, h, z spatial coordinates in the r, h, z directions,

respectively
R1, R2 radius of inner and outer cylinder, respec-

tively
Re Reynolds number based on characteristic

velocity and length scales
Red Reynolds number ¼ Ucd=m
Res Reynolds number ¼ usd=m
ReDh Reynolds number ¼ UmDh=m
RuuðzÞ two-point correlations of fluctuating stream-

wise velocities in the z direction
RuuðhÞ two-point correlations of fluctuating stream-

wise velocities in the h direction
Sij mean strain rate tensor
Sðv0rÞ skewness factor of the wall-normal velocity

fluctuation
t time
us friction velocity ¼ ðsw=qÞ1=2
Uc laminar maximum velocity
Um bulk mean velocity
vr, vh, vz velocity components in the r, h, z directions,

respectively
Vr, Vh, Vz mean velocity components in the r, h, z

directions, respectively
y distance from the inner or outer wall

Greeks
a radius ratio ¼ R1=R2

d half width between inner wall and outer
wall

Dri, Dro minimum grid spacing from the inner and
outer wall, respectively

Drmax maximum grid spacing in the radial direction
Dh, Dz grid spacing in the azimuthal and axial di-

rections, respectively
� dissipation rate of k
m kinematic viscosity
q density of fluid
sw statistically averaged wall shear stress at the

inner or outer wall
H inclination angle of projected vorticity

vector ¼ tan�1ðxr=xzÞ
xr, xh, xz fluctuating vorticity components in the r,

h, z directions, respectively

Abbreviations
CFL Courant–Friedrichs–Lewy
DNS direct numerical simulation
DS dissipation
KMM Kim, Moin and Moser
LDV laser Doppler velocimetry
PD pressure diffusion
p.d.f.s probability density functions
PR production
PS pressure strain
Q1,Q2,Q3,Q4 first, second, third and fourth quad-

rant, respectively
r.m.s. root mean square
TBL turbulent boundary layer
TD turbulent diffusion
VD viscous diffusion
VPG velocity–pressure gradient

Superscripts and subscripts
ð Þ0 fluctuating component
ð Þþ normalized by us and m
� angle in degree
ð Þ statistically averaged in time and space
ð Þi, ð Þo values of inner and outer walls, respec-

tively
ð Þrms r.m.s. value
h i spatially averaged on the h–z plane
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Sparrow, 1966). Neves et al. (1994) and Shin and Choi
(2000) performed DNSs of axial flow boundary layers
on cylinders. They considered the model problems as
axial flows between concentric cylinders driven by mild
streamwise pressure gradients in order to avoid diffi-
culties with simulating spatially evolving boundary lay-
ers. Neves et al. (1994) showed that the slope of the
mean velocity profile in the logarithmic region, turbu-
lent intensities and Reynolds shear stress decrease as
curvature increases. They also presented an energy
partition parameter (K�) to explain lower intercompo-
nent energy transfer with increasing curvature. On the
other hand, as opposed to those near the inner wall, the
turbulent structures near the outer wall seem to be
similar to those in pipe flow in the case of a small radius
ratio.
The objective of the present study is to elucidate the

transverse curvature effect on near-wall turbulent
structure in concentric annular pipe flow. Toward this
end, a DNS is performed for a turbulent concentric
annular pipe flow. A schematic diagram and a coordi-
nate system of the flow configuration are shown in Fig. 1.
The transverse curvature effect on near-wall turbulent
structure is analyzed for two radius ratios (a ¼ 0:1 and
0.5), which exemplify the situations of strong and weak
curvature effects. The Reynolds number based on the
bulk velocity (Um) and the hydraulic diameter (Dh) is
ReDh ¼ 8900. A fractional step method with an implicit
velocity decoupling procedure is employed to simulate
the flow (Kim et al., 2002). This method is validated by
testing a DNS of turbulent pipe flow. Lower-order and
higher-order statistics are obtained to analyze the near-
wall turbulent structures close to the inner and outer
walls, which are compared with the previous DNS data
of Kim et al. (1987), Eggels et al. (1994) and Neves et al.
(1994). The Reynolds stress budgets are computed to
confirm the results of the lower-order statistics. A
quadrant analysis of the Reynolds shear stress is per-
formed to obtain detailed information on the contribu-
tion to turbulence PR (consumption) from various
flow events. The inclination angles of the projected
vorticity vectors are examined by p.d.f.s to analyze the

transverse curvature effects on the orientation of the
vorticity field.

2. Equations and numerical procedure

In cylindrical coordinates, when the variables qh ¼ vh,
qr ¼ rvr and qz ¼ vz are introduced, the continuity
equation is

1
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or

þ 1
r
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oh
þ oqz

oz
¼ 0: ð1Þ

Here, vh, vr and vz denote the azimuthal, radial, and axial
velocity components, respectively. The Navier–Stokes
equations in terms of the variables can be written as:
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All the variables are non-dimensionalized by a char-
acteristic length (d) and velocity scale (Um) and Re is the
Reynolds number. A numerical method in cylindrical
coordinates requires a large effort to treat the singularity
at r ¼ 0. In the present formulation, the quantity
qr ¼ rvr on a staggered grid is introduced to simplify the
discretization of this region since qr ¼ 0 at r ¼ 0 (Ver-
zicco and Orlandi, 1996).
The governing equations (1) and (2) are integrated in

time by using a fractional step method with an implicit
velocity decoupling procedure, which has been proposed
by Kim et al. (2002). After all the terms are discretized
with the Crank–Nicolson method in time, the coupled
velocity components in the convection terms are de-
coupled by the implicit velocity decoupling procedure.
Decoupled velocity components are solved without it-
eration. Since the implicit decoupling procedure relieves
the CFL restriction, the computational time is re-
duced significantly. The overall accuracy in time is sec-Fig. 1. Schematic diagram and coordinate system.
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ond-order. All the terms are resolved with a second-
order central difference scheme in space with a staggered
mesh. Details regarding the numerical algorithm are
available in Kim et al. (2002).
Periodic boundary conditions for velocity compo-

nents are applied in the axial and circumferential di-
rections. A no-slip boundary condition is imposed at the
solid wall. As for the computational domain, a full do-
main of the concentric annular pipe is chosen for
a ¼ 0:1. However, the computation is conducted in only
one-quarter of the full cross-section for a ¼ 0:5. Note
that the computational length in the streamwise direc-
tion is Lz ¼ 18d for a ¼ 0:5 and Lz ¼ 15d for a ¼ 0:1,
respectively. To illustrate the adequacy of the compu-
tational domains, two-point correlations of the fluctu-
ating streamwise velocities in the streamwise (z) and
azimuthal (h) directions are shown in Figs. 2 and 3. For

a ¼ 0:5, the two-point correlations in Fig. 2 show that
they fall off to zero values for separations. For a ¼ 0:1,
similar trends of the correlations are shown in Fig. 3.
This suggests that the computational domains are suf-
ficiently large for both cases. The detailed grid resolu-
tions for two cases are listed in Table 1. As mentioned
earlier, two values of a (¼ 0:1 and 0.5) are chosen for
computations. These exemplify the situations in which
the curvature effect, compared to the overall curvature
effects of turbulent channel and pipe flows, is strong and
weak, respectively. The computational time step used is
0:04d=Uc and the total averaging time to obtain the
statistics is 600d=Uc for both cases. Here, Uc is the
laminar maximum velocity. A hyperbolic tangent dis-
tribution is used for a clustering of grid points in the
wall-normal direction.

3. Results and discussion

3.1. Mean flow properties

Before proceeding further, it is important to ascertain
the reliability and accuracy of the present numerical
simulation. Toward this end, a comparison is made of
the mean velocity distributions normalized by the bulk
velocity with the experimental data of Nouri et al. (1993)
as shown in Fig. 4(a). Agreement with the experimental
data is satisfactory, although a slight deviation is ob-
served in the center region. It is interesting to note that
the integration of the measured profiles in the radial
direction does not yield a value of unity while that of the
numerical profiles shows 1.0. This tendency was also
pointed out in the previous numerical investigation
(Azouz and Shirazi, 1998). When rescaled by a process
of normalization, the numerical prediction is in excellent
agreement with the experimental data. Note that the
positions of the maximum velocities are skewed toward
the inner wall in both cases. Several mean flow param-
eters obtained from the present simulation are summa-
rized in Table 2. Here, Red is based on the laminar
maximum velocity (Uc) and the half width (d) between
the inner and outer walls. In Table 2, the skin friction

Fig. 2. Two-point correlation coefficients for a ¼ 0:5: (a) streamwise
separations and (b) azimuthal separations.

Fig. 3. Two-point correlation coefficients for a ¼ 0:1: (a) streamwise
separations and (b) azimuthal separations.

Table 1

Grid resolutions

a 0.5 0.1

Lþ
z 2746.80 2688.75

Lþ
hi

479.50 250.28

Lþ
ho

909.25 1975.57

Dzþ 14.30 14.00

ðR1DhÞþ 3.75 0.98

ðR2DhÞþ 7.10 7.72

Drþi 0.13 0.15

Drþo 0.12 0.12

Drþmax 12.96 15.23

(Nr, Nh, Nz) (65,128,192) (65,256,192)
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coefficient (Cf ¼ sw=ð1=2ÞqU 2m) of the inner wall is lar-
ger than that of the outer wall. Moreover, this tendency
becomes more clear as a decreases. The value of Cf

according to the empirical relation of Nouri et al. (1993)
Cf ¼ 0:36Re�0:39 is 0.01038 for a ¼ 0:5 and Re ¼ 8900.
In the present study, the skin friction coefficient based
on the averaged friction velocity Cf ¼ ðRi=ðRiþ
RoÞÞCfi þ ðRo=ðRi þ RoÞÞCfo is 0.0088 for a ¼ 0:5. This
value is smaller than that of Nouri et al. (1993). The
values of non-dimensional pressure gradient Kp ¼
m=ðqu3sÞdp=dz are listed in Table 2 (Patel, 1965). Note
that the value �Kp of outer wall is larger than that of
inner wall.
Comparison is extended to the logarithmic velocity

profiles in Fig. 5. In Fig. 5(a), a slight discrepancy be-

tween the profiles of the inner and outer walls appears
only in the region of yþ > 100. In Fig. 5(b), however, the
deviations are significant and the slope of the inner
profile is lower than that of the outer profile in the
logarithmic region. This may be attributed to the cur-
vature effect, which is caused by the decrease of the ra-
dius of the inner cylinder.

3.2. Turbulent intensities and Reynolds shear stresses

R.m.s. distributions of the fluctuating velocities,
normalized by the friction velocity (us), are exhibited in
Fig. 6. A comparison between the inner and outer walls
indicates that turbulent intensities of the inner wall are
smaller than those of the outer wall. This tendency is
pronounced at a ¼ 0:1. The smaller turbulent kinetic
energy in the inner wall is due to the transverse curva-
ture effect. Since the surface area of the inner wall is
smaller than that of the outer wall, the inner wall sup-
plies relatively less turbulent kinetic energy than the
outer wall to the same volume of flow.
To examine the altered energy redistributions by the

curvature effect, the energy partition parameter
K� ¼ ð2v02z =ðv02r þ v02h ÞÞ is employed (Lee et al., 1990) and
the results are shown in Fig. 7. This is a measure of the
relative contribution to the turbulent kinetic energy of
the streamwise turbulence intensity and the intensities
normal to the mean flow (Neves et al., 1994). It is seen
that the values of K� near the inner wall are larger than
those near the outer wall in the region yþ < 60. This

Fig. 4. Mean velocity distributions.

Table 2

Mean flow parameters

a 0.5 0.1

ReDh 8900 8900

Red 3355 3487

Res (Inner) 153 179

Res (Outer) 144 141

Cf (Inner) 0.00941 0.01300

Cf (Outer) 0.00849 0.00810

�Kp (Inner) 0.00380 0.00242

�Kp (Outer) 0.00449 0.00492

Uc=us (Inner) 22.09 19.45

Uc=us (Outer) 23.26 24.65

Um=us (Inner) 14.65 12.41

Um=us (Outer) 15.43 15.72

Fig. 5. Mean velocity distributions for the law of the wall.
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suggests that the amount of energy transfer from the
streamwise velocity component to the other two velocity
components near the inner wall is smaller than that near
the outer wall.
The Reynolds shear stress (�v0zv0r) and total shear

stress ð�v0zv0r þ ð1=ReÞðdVz=dyÞÞ in the global coordinate
are shown in Fig. 8(a). Here, y and vr denote a distance

from the outer wall and a velocity component normal to
the outer wall, respectively. In Fig. 8(a), distributions of
the Reynolds shear stress and total shear stress are
asymmetric, similar to those of the mean velocities in
Fig. 4. It is interesting to note that the positions of zero
total shear stresses are closer to the inner walls than
those of the maximum velocities (see Fig. 4). This
phenomenon is also demonstrated in the experimental
study of Rehme (1974). Furthermore, the distributions
of the total shear stresses are slightly curvilinear due to
the curvature, while these are linear in pipe and channel
flows. Profiles of the Reynolds shear stress in the wall
coordinate are displayed in Fig. 8(b). This suggests that
the Reynolds shear stress near the outer wall is larger
than that near the inner wall like the r.m.s. distributions
of fluctuating velocities in Fig. 6.

3.3. Reynolds stress budgets

DNS is of great help in obtaining the various terms
in the budgets for the Reynolds-stress components ex-
plicitly. Computed Reynolds-stress budgets by DNS
provide detailed information on the dynamical charac-
teristics of turbulence such as PR, redistribution and DS
of turbulent kinetic energy. The transport equations of
the Reynolds stresses are derived from the Navier–
Stokes equations by ensemble-averaging the equations,
then deriving equations for the fluctuating stresses and
ensemble-averaging these equations (Mansour et al.,
1988). In the present study, the flow is homogeneous in
the streamwise and azimuthal directions. The only non-
zero mean velocity is the one in the axial direction and
all derivatives of mean quantities in the axial and cir-
cumferential directions disappear. The remaining terms
of the Reynolds-stress equations and the turbulent ki-
netic energy k ¼ ð1=2Þðv02r þ v02h þ v02z Þ in cylindrical co-
ordinates under consideration are as follows:

Fig. 6. R.m.s. velocity fluctuations: (a) axial velocity, (b) normal

velocity and (c) azimuthal velocity.

Fig. 7. Energy partition parameter K� ¼ 2v02z =ðv02r þ v02h Þ.

Fig. 8. Distributions of Reynolds shear stress and total shear stress.
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: ð7Þ

Terms on the right-hand sides of (4)–(7) are identi-
fied as follows: PR, PS, PD, DS, TD and VD. The two

pressure terms can be combined to form the VPG (Eg-
gels et al., 1994). The PR terms in the turbulent kinetic
energy budget are displayed in Fig. 9. It is shown that
the positions of the maximum values are located at
yþ 
 12 for both cases. This is consistent with the DNS
results of turbulent channel and pipe flow (Mansour
et al., 1988; Eggels et al., 1994). Note that the values of
the outer walls are larger than those of the inner walls
for both cases. This reconfirms the results of the r.m.s.
profiles of fluctuating velocities in Fig. 6.
In the budget equations of the turbulent intensities,

the PS terms are responsible for the intercomponent
energy transfer. Fig. 10 shows the PS terms in Eq. (7). It
is seen that the profiles of the outer wall are larger than
those of the inner wall for both cases. This indicates a
lower energy redistribution of the inner wall, which
represents the same results as the energy partition pa-
rameter K� ¼ ð2v02z =ðv02r þ v02h ÞÞ in Fig. 7.

3.4. Higher-order statistics

In this subsection, we consider the skewness and
flatness factors of fluctuating velocities to explore the
transverse curvature effect on higher-order statistics. To
attain these quantities with high reliability, a larger
statistical sample size is required than in the case of the
second-order statistics. The sufficiency of satisfying this
condition can be examined by evaluating the skewness
factor of the fluctuating azimuthal velocities. Because of
the reflective symmetry of the Navier–Stokes equations,

Fig. 9. PR terms in the budget of the turbulent kinetic energy in wall

coordinates.
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the skewness of vh should equal zero everywhere. How-
ever, there are small oscillations around zero in the
computed statistics (
0.05 and 0.02 for a ¼ 0:1 and 0.5,
respectively (not shown)). Although this is owing to the
finite statistical sample, it is reasonable to believe that
the present results are good when compared to those
in the previous DNSs of pipe and channel flows (Eggels
et al., 1994; Kim et al., 1987).
The skewness factors of the wall-normal velocity

fluctuations are exhibited in Fig. 11. Here, wall-normal
velocity vr is defined to be positive in the direction
outward from the wall. In Fig. 11(a), the skewness factor
of the inner wall becomes zero at two points yþ 
 7 and
yþ 
 25, in contrast to that of the outer wall which has
only one crossover point at yþ 
 35. These results for
the inner and outer walls are consistent with the previ-
ous numerical data for channel and pipe flows corre-
sponding to the inner and outer walls, respectively (Kim
et al., 1987; Eggels et al., 1994). In the region of yþ > 50,
there is a large discrepancy between the profiles of the
inner wall and channel flow. This is because the value of
zero-shear point (yþ 
 130) of the inner wall is smaller
than that of the channel flow (yþ 
 180). In Fig. 11(b),
the profile of the skewness factor near the outer wall is
similar to that in the pipe flow. Near the inner wall,
however, the profile is positive throughout the layer.
This tendency is discernible in the numerical simulation
of TBL on a cylinder in an axial flow (Neves et al.,
1994). A large difference is also observed between the
profiles of the inner wall and the TBL on a cylinder as in
the case of a ¼ 0:5. An examination of the results in

Fig. 11 indicates that the concentric annular pipe flow
has the general characteristics of fully developed flows
such as channel and pipe flows. Furthermore, for a small
radius ratio (a ¼ 0:1), the turbulent structure near the
inner wall is similar to that of the external flow longi-
tudinal to a cylinder. One could think about a difference
between the wall-bounded and the external flows, e.g., a
plane channel flow and a TBL. This can be observed in a
zero-shear region of the wall-bounded flow and a non-
turbulent free stream region of the external flow. The
r.m.s. values of velocity fluctuations in a turbulent plane
channel flow and a TBL are a good example (Pope,
2000). In the inner layer of the TBL, the r.m.s. profiles
are almost similar to those in the channel flow. As the
edge of the boundary layer is approached, the r.m.s.
values tend to zero. Near the zero-shear region of the
channel flow, however, the r.m.s. values exhibit non-
zero ones.
To explain the altered intermittent behavior of the

inner and outer walls, which is pertinent to the subse-
quent interpretation of the PR of Reynolds shear stress,
the flatness factors of the wall-normal velocity fluctua-
tions are shown in Fig. 12. For yþ > 25, the flatness
factors are only a little larger than the corresponding
value for a Gaussian distribution (F ¼ 3). Near the wall
(yþ < 20), the values of the flatness factor near the inner
and outer walls rapidly increase for both cases. This
reflects the high intermittency of the wall-normal ve-
locity fluctuations close to the wall. As reported in the
numerical simulation of Xu et al. (1996), such high

Fig. 10. PS terms in the budget of v0zv0z in wall coordinates.

Fig. 11. Skewness profiles of the wall-normal velocity fluctuations.
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values are attributed to strong sweep events. Note that
the outer profiles are larger than the inner profiles in the
vicinity of the walls for both cases. As a result, the sweep
events in the outer walls may be stronger than those in
the inner walls. To manifest this phenomenon, a quad-
rant analysis for the Reynolds shear stresses is carried
out in Section 3.5.

3.5. Quadrant analysis

The quadrant analysis of the Reynolds shear stress
provides detailed information on the contribution of
flow events to the PR (consumption) of the turbulent
kinetic energy (Brodkey et al., 1974; Willmarth and Lu,
1972). The analysis divides the Reynolds shear stress
into four categories according to the signs of u0 and v0.
The Q1, u0 > 0 and v0 > 0, contains outward motion of
high-speed fluid; the Q2, u0 < 0 and v0 > 0, contains
outward motion of low-speed fluid referred to as the
ejection events; the Q3, u0 < 0 and v0 < 0, contains in-
ward motion of low-speed fluid; the Q4, u0 > 0 and
v0 < 0, contains an inrush of high-speed fluid referred to
as the sweep events. Here, Q1 and Q3 events contribute
to the positive Reynolds shear stress (negative produc-
tion), and Q2 and Q4 events contribute to the negative
Reynolds shear stress (positive production).
The contribution to the Reynolds shear stress from

each quadrant is shown in Fig. 13. The thin and thick
lines denote the profiles of the inner wall and outer wall,
respectively. The crossover points between the domi-
nance of Q2 and Q4 events are located at yþ 
 13 for

both cases. This is very similar to the numerical results
for the channel and TBL on a cylinder in an axial flow
(Neves et al., 1994; Kim et al., 1987). When we compare
the inner and outer profiles, it is notable that sweep
events near the outer walls are more predominant than
those near the inner walls. On the other hand, ejections
near the inner walls contribute to the Reynolds shear
stress more predominantly than those near the outer
walls. This can be interpreted to be the same result as
that of the flatness factors of wall-normal velocity fluc-
tuations in Section 3.4. However, since the quadrant
analysis provides not only the strength of sweep events
but also the number of occurrences of sweep events,
more detailed investigations are required to assess the
effects of the strength of sweep events solely.
To explain the difference in the strength of sweep

events between inner and outer walls more clearly,
scatter plots of the instantaneous u0 and v0 for a ¼ 0:1
are illustrated in Figs. 14 and 15. Six y-locations are
selected to show the altered dominance of sweep and
ejection events around the crossover point, which is
confirmed in Fig. 13. At yþ ¼ 2; 5 and 8, sweep motions
are more dominant than ejections. At the crossover
point (yþ ¼ 13), sweep and ejection events seem to be
the same as each other. Further away from the wall
(yþ ¼ 20 and 50), ejections are more distinct than sweep
motions. In Figs. 14 and 15, it should be noted that

Fig. 12. Flatness profiles of the wall-normal velocity fluctuations.

Fig. 13. Reynolds shear stress for each quadrant normalized by the

mean Reynolds shear stress.
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sweep events near the outer wall are much stronger
than those near the inner wall. This guarantees that the
strength of the sweep motions near the outer wall is
higher than that near the inner wall.
Instantaneous contours of �v0rv

0
z and velocity vectors

in a r–h plane are depicted in Figs. 16 and 17. The dark
and bright regions reflect negative and positive Reynolds
shear stress near the inner wall, respectively. In the case
of the outer wall, the sign of Reynolds shear stress ac-
cording to the brightness is opposite to that in the case
of the inner wall. Strong sweep and ejection events can
be observed near the inner and outer walls where the
Reynolds shear stress is high. These figures further il-
lustrate the point discussed above that the fluid particles
entailing strong sweep motions near the outer wall are
detected more frequently than those near the inner wall.
As discussed above, it can be clearly seen that the

turbulent structures near the outer wall are more acti-
vated than those near the inner wall. This may be at-
tributed to the different vortex regeneration processes
between the inner and outer wall. Brooke and Hanratty
(1993) and Bernard et al. (1993) stated that flow-ori-

ented vortices in the near-wall region can create other
streamwise vortices through strong sweep motions. In
the present turbulent concentric annular pipe considered
here, the vortex regeneration process near the outer wall
may occur more violently than near the inner wall, since
the surface area of the outer wall with which the
streamwise vortex can interact is larger than that of the
inner wall. However, further detailed investigations
should be implemented to clarify the different turbulent
structures between the inner and outer walls.

3.6. Vorticity

It is known that vorticity is closely related to turbu-
lence PR and sustenance in a wall-bounded turbulent
flow. We now develop a dynamical explanation for the
different turbulent structures between the inner and
outer walls by scrutinizing vorticity. Vorticity fluctua-
tions normalized by the mean wall shear stress are
shown in Fig. 18. For both cases (a ¼ 0:1 and 0.5), all
the vorticity intensities near the inner walls are
lower than those near the outer walls, except for the

Fig. 14. Instantaneous distributions of (u0, v0) near the inner wall for a ¼ 0:1.
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wall-normal vorticity intensities which are unaffected by
the curvature near the walls (yþ < 10). In Fig. 18, the
axial vorticity intensity exhibits a near-wall local
minimum at yþ ¼ 5 and a local maximum at yþ ¼ 20

regardless of the curvature. This is consistent with the
result of Kim et al. (1987), where they linked the loca-

Fig. 16. Instantaneous contours of �v0rv
0
z and vector plots in a r–h

plane for a ¼ 0:1.
Fig. 17. Enlarged instantaneous contours of �v0rv

0
z and vector plots in a

r–h plane for a ¼ 0:1.

Fig. 15. Instantaneous distributions of (u0, v0) near the outer wall for a ¼ 0:1.
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tions and intensity of these extrema to the average po-
sition and strength of the near-wall streamwise vortices.
As in the simulation of TBL on a cylinder in an axial
flow (Neves et al., 1994), both the streamwise vortex
core radius and the position of the center of these vor-
tices are not changed appreciably with curvature, al-
though the strength of the vortices is greatly reduced.
To obtain a better understanding of the transverse

curvature effect on the vorticity, a statistical investiga-
tion on the orientation of the vorticity field is made.
Here, we follow the approach of Moin and Kim (1985).
The inclination of the projection of the vorticity vector
in a r–z plane is given by

H ¼ tan�1 xr

xz

� �
: ð8Þ

The p.d.f.s of H, weighted by the magnitude of the
projected vorticity vector ðx2r þ x2z Þ=hx2r þ x2z i, are
shown in Figs. 19 and 20. Here, h i indicates the mean
of the quantity inside the brackets taken on the corre-
sponding z–h plane. The weighted p.d.f.s described be-
low enhance the contributions of the strong vorticity
fluctuations. At the closest point to the walls (yþ 
 0:7),
the distributions are highly concentrated around 0� and
�180�. This is because the wall-normal vorticity is zero
due to no-slip. As one moves away from the wall, the
peaks of the distributions are located around �90�. This
tendency persists up to yþ 
 16 and 37 in Fig. 19(a) and
(b), respectively and up to yþ 
 10 in Fig. 20. Further
from the wall, the peak shifts to �135� and 45� as was
observed by Moin and Kim (1985). Note that there ex-

ists a thicker layer near the outer wall, in which the
vorticity has a �135� and 45� orientation. This suggests
that the vortical structures inclined at 45� to the mean
flow in the outer wall occur more frequently.
Turbulent energy of eddies has to be sustained by the

shear flow, since the energy is continuously transferred
to smaller eddies. In other words, the energy transfer
from large eddies to small eddies can be considered
in terms of a vortex stretching mechanism. The eddies
which are more effective than others in absorbing energy
from the mean flow are vortices whose principal axis is
aligned with that of the mean strain rate (Tennekes and
Lumley, 1972). For the concentric annular pipe flow
considered in the present study, the principal axis of the
mean strain rate tensor Sij is inclined at 45� to the flow
direction. This fact suggests that the vortices which can
extract turbulent energy from the mean flow effectively
are observed more frequently near the outer wall as was
shown in Figs. 19 and 20. The strength of vortices is
increased by vortex stretching owing to the conservation
of angular momentum. Thus, strong evidence for the
discrepancy between the inner and outer profiles in Fig.
18 can be obtained by explaining the vortex stretching
mechanism. In addition, since this stretching mechanism
by the mean shear enhances the correlation between u0

and v0, the differences in the Reynolds shear stress dis-
cussed previously can be understood well in light of this
phenomenon.

4. Conclusions

A detailed numerical analysis has been performed to
delineate the transverse curvature effects on near-wall
turbulent structures in a turbulent concentric annular
pipe flow. The statistical descriptions of the turbulent
quantities were obtained by performing a DNS of tur-
bulent concentric annular pipe flow at ReDh ¼ 8900 for
two radius ratios (a ¼ 0:1 and 0.5). In the first place, the
mean velocity distribution normalized by the bulk ve-
locity for a ¼ 0:5 was represented to validate the present
simulation. The mean velocity distribution was in good
agreement with the previous experimental results. It was
obvious from the mean velocity distributions that a
distinctive feature of concentric annular pipe flow is the
radial asymmetry of the statistics––the smaller the ra-
dius ratio, the more asymmetric the flow. It was found
that the slope of the inner profile is lower than that of
the outer profile in the logarithmic region.
Turbulent intensities and Reynolds shear stresses of

the inner wall were smaller than those of the outer wall.
Since the surface area of the inner wall is smaller than
that of the outer wall, the inner wall supplies relatively
less turbulent kinetic energy than the outer wall to the
same volume. From the investigation of the energy
partition parameter, the intercomponent energy transfer

Fig. 18. R.m.s. vorticity fluctuations.

S.Y. Chung et al. / Int. J. Heat and Fluid Flow 23 (2002) 426–440 437



in the inner wall was lower than that of the outer wall.
This was confirmed by evaluating the PS terms of the
streamwise intensity in the Reynolds stress budget
analysis. More distinctive features of transverse curva-
ture effects were represented in the higher-order statis-
tics. The skewness factor of wall-normal velocity
fluctuations indicated that the concentric annular pipe
flow has the general characteristics of fully developed
flows such as channel and pipe flows. The flatness factor
of wall-normal velocity fluctuations reflected that the
sweep events in the outer walls are stronger than those in
the inner walls.
Detailed investigations on Reynolds shear stress and

vorticity, which are directly associated with turbulence
PR and maintenance, were accomplished. The quadrant
analysis of Reynolds shear stress informed that the

strength of the sweep events near the outer wall is
greater than that near the inner wall. All the vorticities
near the outer wall were higher than those of the inner
wall, except for the wall-normal vorticity which was not
affected near the wall (yþ < 10). The average location
and the radius of the streamwise vortices were consistent
with the streamwise vortex model suggested by Kim
et al. (1987). From the p.d.f.s of the inclination angles of
the projected vorticity vectors, the transverse curvature
effects on the orientation of the vorticity field were ex-
plored. This suggested that the vortices which can ex-
tract turbulent energy from the mean flow most
effectively occur more frequently near the outer wall.
The differences in the Reynolds shear stresses and the
vorticity intensities between the inner and outer walls
were also clarified by vortex stretching mechanisms.

Fig. 19. Weighted p.d.f.s of the inclination angles of the projected vorticity vectors near the inner wall: (a) a ¼ 0:5 and (b) a ¼ 0:1.
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